
Model Trees for
Classification of Hybrid Data Types?

Hsing-Kuo Pao, Shou-Chih Chang, and Yuh-Jye Lee

Dept. of Computer Science & Information Engineering,
National Taiwan University of Science & Technology, Taipei, Taiwan

{pao, M9115009, yuh-jye}@mail.ntust.edu.tw

Abstract. In the task of classification, most learning methods are suit-
able only for certain data types. For the hybrid dataset consists of nom-
inal and numeric attributes, to apply the learning algorithms, some at-
tributes must be transformed into the appropriate types. This procedure
could damage the nature of dataset. We propose a model tree approach
to integrate several characteristically different learning methods to solve
the classification problem. We employ the decision tree as the classifica-
tion framework and incorporate support vector machines into the tree
construction process. This design removes the discretization procedure
usually necessary for tree construction while decision tree induction itself
can deal with nominal attributes which may not be handled well by e.g.,
SVM methods. Experiments show that our purposed method has better
performance than that of other competing learning methods.

1 Introduction

In the real world, the datasets usually include both of the (unordered) nominal
(or discrete) attributes and the numeric (or continuous) attributes. We name this
kind of datasets as hybrid datasets. Most learning algorithms for classification are
only suitable for certain specified data types. When the undesired data types are
encountered in the dataset, conventionally we transform them into appropriate
types so that the learning algorithm can be proceeded [1–4]. E.g., numeric data
need a discretization process before the typical decision tree induction can be
applied and SVM works on the space of numeric data only. Sometimes the type
transformation is artificial and results in changing of the dataset nature.

To overcome this problem we employ a novel model tree approach which
a decision tree (DT) framework, combining with SVMs [5, 6] will be used for
the classification of hybrid sets. During the tree construction, the SVMs play
a role of replacing the discretization procedure and providing a possible way of
extending a univariate decision to a multivariate decision. In an internal node,
before the tree splitting, SVM will help to generate a synthetic Boolean attribute
based on the numeric attributes of current training examples in this node, rather

? Research partially supported by Taiwan National Science Council Grant # 93-2213-
E-011-036.



2 Pao et al.

than discretize the numeric attributes regardless of their interdependencies [1, 3].
When we choose the “best” splitting attribute we consider the original nominal
attributes as well as the synthesized Boolean attribute. If the synthetic Boolean
attribute is chosen as the splitting attribute, it means that the decision node has
a multivariate decision implicitly. Therefore, this strategy extends the ability of
DTs to include multivariate decisions. On the other hand, SVM itself can not
naturally deal with nominal data without creating any artificial encodings. Thus,
our proposed model tree, combining the power of DT and SVM, will be suitable
to solve the classification problem for hybrid datasets.

2 Decision Tree Induction with Hybrid Data Types

DT methods [7, 8] are used widely in the fields of machine learning and data min-
ing. A DT consists of internal and external nodes where an internal node with
several branches represents alternative choices to make based on the (discrete)
values of selected attribute and an external node (a leaf) is usually associated
with a single class label. A prediction is done following the path from the tree
root to a leaf, by several branch choices according to given attribute values. The
typical DT construction adopts the top-down, divide-and-conquer strategy to re-
cursively build the classification tree [8]. DTs have some advantages such as easy
to interpret, efficient to generate and capable of coping with noisy data [9, 10].
However, DTs are notorious to be unstable (i.e., high variance). Often a small
change in the training set results in different trees and produces inconsistent
classification results for the same test set. The instability is inherent because
the effect of an error on a top split will be propagated down to all of the splits
below [11]. Some approaches have been proposed by combining multiple mod-
els to improve the accuracy and stability of DT prediction, such as bagging or
boosting [12–14]. Some examples of DT induction are ID3, C4.51, C5.02 [8, 12]
and CART [7]. We shall discuss two issues related to DT induction.

2.1 Incorporating Continuous-Valued Attributes

Many real world classification tasks involve nominal and numeric attributes. For
numeric attributes, DT can not be adopted directly unless they are discretized
in advance, i.e., partitioning each of the continuous attributes into disjoint in-
tervals [1]. E.g., an attribute X can be separated as X ≤ c and X > c for the
binary DT. The strategies of discretization are usually categorized by (1) being
supervised or unsupervised, (2) being global or local, and (3) being static or
dynamic, three options [1, 2, 4, 8, 3]. Most choices are heuristically or empirically
decided. Also, for many of the discretization approaches, the number of intervals
is decided arbitrarily. These can lead to low prediction accuracies or inefficient
tree structures, for datasets with hybrid data types or only the numeric data
1 Some MDL-based discretization for continuous attributes is adopted in certain ver-

sions.
2 A variant of AdaBoost is implemented.



Model Trees 3

type [15, 1, 4, 8]. While many DT inductions are more satisfied with discrete at-
tributes than continuous ones, we adopt SVM for classification in the subspace
spanned by those continuous attributes. In Sec. 4, a combined classifier from DT
and SVM will be introduced to deal with datasets with hybrid types.

2.2 Univariate and Multivariate Decision Trees

The classical approach for building a DT, such as C4.5, uses an orthogonal (or
axis-parallel) partition at each decision node, so called univariate method [8].
Opposite to that, CART [7] allows for the option of multivariate decisions. For
instance, one check simultaneously involving two attributes X1 and X2, such as
X1+X2 ≤ 6.5, may be operated in a decision node. Clearly, there are cases where
multivariate approach can work efficiently (producing trees with few nodes), but
not for the univariate approach3 [17, 7, 9, 18–21, 10]. We introduce SVM for being
capable of multivariate consideration at a node. Other than using a SVM in
each decision node in [17], we adopt the machine only for continuous attributes.
For discrete attributes, the regular ID3 algorithm is applied. By that, we take
advantage of powerful SVM for classification, while not losing the readability of
DT induction. Further discussion is in Sec. 4.

3 Support Vector Machines

We are given a training dataset S = {(x1, y1), . . . , (xm, ym)} ⊆ Rn × R, where
xi ∈ Rn is the input data and yi ∈ {−1, 1} is the corresponding class label. The
aim of SVM is to find the optimal separating hyperplane with the largest margin
from the training data. Here, “optimal” is used in the sense that the separating
hyperplane has the best generalization for the unseen data based on statisti-
cal learning theory [6]. This can be achieved by solving a convex optimization
problem given as follows:

min
(w,b,ξ)∈Rn+1+m

C
∑m

i=1 ξi + 1
2‖w‖

2
2

s.t. yi(w′xi + b) + ξi ≥ 1
ξi ≥ 0, for i = 1, 2, . . . ,m,

(1)

where C is a positive control parameter and weights the tradeoff between the
training error and the part of maximizing the margin. We have to point out here,
due to the nature of SVM it is more suitable for numeric data type.

In smooth support vector machine (SSVM) [22], the SVM model (1) is
changed slightly and converted into a unconstrained minimization problem by
utilizing the optimality conditions. These give the SVM reformulation defined
as follows:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(1− yi(w′xi + b))2+ +
1
2
(‖w‖2

2 + b2), (2)

3 For the multivariate case, the separating hyperplane do not need to be linear [16].



4 Pao et al.

where the plus function x+ is defined as x+ = max{0, x}. In SSVM, the plus
function x+ is approximated by a smooth p-function, p(x, α) = x + 1

α log(1 +
e−αx), α > 0. By replacing the plus function with a very accurate smooth ap-
proximation p-function gives the smooth support vector machine formulation:

min
(w,b)∈Rn+1

C

2

m∑
i=1

(p(1− yi(w′xi + b), α))2 +
1
2
(‖w‖2

2 + b2), (3)

where α > 0 is the smooth parameter. The objective function in problem (3) is
strongly convex and infinitely differentiable. Hence, it has a unique solution and
can be solved by using a fast Newton-Armijo algorithm [22]. This formulation
can be extended to the nonlinear SVM by using the kernel trick. We will not
use the nonlinear SSVM in our proposed method because the nonlinear SSVM
tends to overfit the small portion of training dataset in the training process.

In next section, we employ the linear SSVM to deal with the numeric at-
tributes and to generate the corresponding synthetic Boolean attribute for the
training examples at each node.

4 Model Trees

With the description in the previous sections, we know DTs and SVMs have
their own characteristics to deal with different classification problems:

1 Most DTs require a discrete feature space.When a DT encounters numeric
attributes, a discretization procedure is applied beforehand to divide each
single numeric attribute into many distinct intervals.

2 On the other hand, SVMs are suitable for the classification of numeric data.
If datasets contain the nominal attributes, some strategies such as encoding
(usually artificial) are applied to transform the nominal attributes into a
series of binary attributes and SVMs treat the values of binary attributes as
the integers, 0 and 1.

To flexibly choose the most appropriate method for different types of attributes
and to overcome the limitation of univariate decision for numeric attributes in
DT induction, we propose a new approach which adopts SVM training in the
process of DT construction. At each node, we use a SVM classification in the
subspace spanned by the (whole) numeric attributes to replace the used-to-be-
necessary discretization procedure. Simultaneously, the SVM represents the pos-
sible multivariate decision to improve the efficiency of univariate method. After
the SVM is built, this “multivariate” decision can be considered and competed
with the other nominal attributes, based on information gain, gain ratio or other
goodness criteria. Below, we give the modeling process in detail.

4.1 Building Model Trees

Suppose an example in the hybrid dataset is expressed as the form (xNOM ,
xNUM , y), where xNOM , xNUM and y represent all of the nominal attributes, all



Model Trees 5

of the numeric attributes and the associated class label, respectively. Moreover,
we use the notation, xSV MB , to represent the synthesized Boolean attribute
whose value is assigned at each node by the SSVM classifier, built from the part
of numeric attributes and training labels. Afterwards, the gain ratio criterion is
employed to decide the best attribute among all of the nominal ones and the
synthesized SVM attribute. That is, in each node, we do the following steps:

Step 1 Using (xNUM , y) to build xSV MB . The process consists of three parts. The
first work is to search the appropriate weight parameter for the linear SSVM
classifier. That is to say, we split xNUM of training examples into training
set and validation set following the stratification and then decide the appro-
priate weight parameter by them. The second work is to retrain the SSVM
classifier by means of the chosen parameter and (xNUM , y) of training ex-
amples. Finally, we use the retrained SSVM classifier, denoted by f(xNUM ),
to generate the corresponding xSV MB according to xNUM of each training
example. If f(xNUM ) > 0, the value of xSV MB is True; otherwise is False.
After the process is finished, training examples are transformed to the new
form, (xNOM , xSV MB , y).

Step 2 Using the gain ratio to select the most appropriate splitting attribute from
xNOM or xSV MB . The split with the highest value of gain ratio will be se-
lected as the attribute. After the splitting attribute is decided, the dataset is
partitioned into two or more subsets accordingly. Note that in order to avoid
the case that our method always chooses the synthetic Boolean attribute
generated via the SSVM, we confine ourselves in the linear SSVM. Besides,
the weight parameter used in SSVM is determined by a tuning procedure to
avoid the overfitting risk.

If one attribute of xNOM is selected, it means that not only the nominal attribute
is more distinguishing than xSV MB but also the decision is univariate. Oppo-
sitely, if xSV MB is selected, it shows that the linear combination of all numeric
attributes has better chance to separate the examples and the decision node is
multivariate implicitly. The process is repeated recursively until any stopping
criterion is met.

5 Experiments

In this section, we test our method on three benchmark datasets from the UCI
repository4 to evaluate its performance. In order to get a fair result, we repeat
four rounds tenfold cross-validation procedure for each experiment. Furthermore,
two popular classification methods, Naive Bayes (NB) and k-nearest-neighbor (k-
NN), are employed to provide the baseline accuracies. Three series of experiments
are performed. First, the classification error rates from different views (different
parts of attributes) are presented. Then we present the final comparison results
from NB, k-NN, C4.5, SSVM and our model tree method. In our experiments, we

4 http://www.ics.uci.edu/∼mlearn/MLRepository.html



6 Pao et al.

choose three hybrid datasets, Cleveland heart disease, Australian and German
that include both of the nominal and numeric attributes from the UCI repository.
They are summarized in Table 1.

Dataset Instances # of nominal attr. # of numeric attr. Majority error

Heart 270 7 6 44.44%
Australian 690 8 6 44.49%
German 1000 13 7 30%

Table 1. Summary of Datasets

In NB approach, for nominal attributes, NB counts the frequencies as the
probabilities P (y) and P (xi|y), for attribute value xi and class label y; and for
numeric attributes, it assumes that the data follows a Gaussian distribution,
hence; the probability of the attribute value can be estimated by the probability
density function. Finally, the class of the test example is assigned by the pos-
terior probability. In k-NN, for nominal attributes, the distance is zero if the
attribute value is identical, otherwise the distance is one; for numeric attributes,
the Euclidean distance is applied directly. We discuss three series of experiments.

Different views: nominal attributes In the first series, only nominal attributes
are extracted from the dataset. Three learning methods, NB, k-NN and C4.5 are
performed. Appropriate parameter tuning is done for each learning algorithm if
there is a need. In this series, k-NN is the most questionable method. Because
it can not reflect the actual distance among different nominal values. The result
is shown in Table 2(a).

Different views: numeric attributes In the second series, only numeric attributes
are extracted. There are five learning methods, NB, k-NN, C4.5, linear SSVM
and Nonlinear SSVM performed. Appropriate parameter tuning is done if there
is a need. In C4.5, the values of the numeric attributes are divided into two
intervals in the local discretization procedure. The result is shown in Table 2(b).
From the first two series, we discover that the results of nominal attributes are
significantly better than the numeric counterparts. Also, it shows that the linear
SSVM performs better than all other methods.

Different methods: all attributes In the third experiment, we compare the error
rates of different methods for hybrid datasets. Because SSVM can only deal with
the numeric attributes, we encode the nominal attributes into a series of Boolean
attributes for SSVM. For example, if the nominal attribute has three possible
values, we encode them as 001, 010 and 100. In model trees, we use the minimum
instances as the early stopping criterion. The number of minimum instances is
determined by a tuning procedure. The final results are shown in Table 3. The
model tree and linear SSVM have the similar accuracies. Moreover, comparing
model trees with C4.5, we find that model trees outperform C4.5 in the Heart
and German, and have the similar accuracy in the Australian.



Model Trees 7

Classification Method
Dataset Naive k-NN C4.5

Bayes

Heart 21.02 19.81 24.54
Australian 13.73 13.33 14.42
German 25.68 28.20 27.25

(a) only nominal attributes

Classification Method
Naive k-NN C4.5 Linear Nonlinear
Bayes SSVM SSVM

23.33 22.87 25.83 21.76 29.63
28.55 25.83 23.80 23.04 24.35
29.08 33.70 30.13 28.77 28.90

(b) only numeric attributes

Table 2. Classification based only on nominal or numeric attributes (error rates %)

Classification Method
Dataset Naive k-NN C4.5 Linear Nonlinear Model

Bayes SSVM SSVM trees

Heart 16.02 17.78 21.67 13.98 29.81 15.65
Australian 22.90 13.33 13.26 13.38 23.88 12.61
German 25.25 25.95 26.55 24.38 28.98 24.67

Table 3. Classification for hybrid datasets (error rates %)

6 Conclusion

We employed DT as the classification framework and incorporated the SVM
into the construction process of DT to replace the discretization procedure and
to provide the multivariate decision. The main idea of our proposed method
was to generate a synthetic Boolean attribute according to the original numeric
attributes and the synthetic Boolean attribute represented the discriminability
of the numeric attributes. Hence, the multivariate decision could be taken into
account during the selection of next splitting attribute. Finally, the experiment
results showed that model tree has better accuracy than the conventional DT
C4.5. We noted that our method can not avoid the inherent instability of DTs.

Our model tree was not just designed for the SVM method only. Any learn-
ing methods appropriate to apply to numeric attributes such as Fisher’s linear
discriminant function or neural networks could be adopted to form a synthetic
Boolean attribute and the rest induction procedure is the same. We could also
accept more than one such synthesized attribute; thus, more than one learning
algorithm at a time under the framework of DTs. We have to point out that
designing a good tuning process to avoid the overfitting risk is extremely impor-
tant. Otherwise, DTs tend to choose the synthetic Boolean attribute induced
by the learning algorithm which has the overfitting drawback as the splitting
attribute. One design is to apply MDL principle to balance between nominal
attributes and the synthetic attribute(s), or between the synthetic attributes
generated from different learning methods. With the help from characteristi-
cally different learning methods, we could build a classifier which can deal with
data of hybrid types successfully.

References

1. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretiza-
tions of continuous features. In: Proceedings of the 12th International Conference
on Machine Learning, New York, Morgan Kaufmann (1995) 194–202



8 Pao et al.

2. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous valued at-
tributes for classification learning. In: Proceedings of the 13th International Joint
Conference on Artificial Intelligence. (1993) 1022–1029

3. Gama, J., Torgo, L., Soares, C.: Dynamic discretization of continuous at-
tributes. In: Proceedings of the Iberoamericam Conference on AI (IBERAMIA-98),
Springer-Verlag (1998) 160–169

4. Kohavi, R., Sahami, M.: Error-based and entropy-based discretization of continu-
ous features. In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press (1996) 114–119

5. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2 (1998) 121–167

6. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New
York (1995)

7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont, CA (1984)

8. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann (1993)
9. Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Machine Learning 19

(1995) 45–77
10. X.-B. Li, Sweigart, J.R., Teng, J.T.C., Donohue, J.M., Thombs, L.A., Wang, S.M.:

Multivariate decision trees using linear discriminants and tabu search. Systems,
Man and Cybernetics, Part A, IEEE Transactions on 33 (2003) 194–205

11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer-Verlag, New York (2001)

12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of online learning
and an application to boosting. J. of Comp. and Sys. Sciences 55 (1997) 119–139

13. Quinlan, J.R.: Bagging, boosting, and c4.5. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth Innovative Applications
of Artificial Intelligence Conference, AAAI 96, AAAI Press (1996) 725–730

14. Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
15. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research 4 (1996) 77–90
16. Ittner, A., Schlosser, M.: Non-linear decision trees - NDT. In: Machine Learning,

Proc. of the 13th Inter. Conf. (ICML ’96), Morgan Kaufmann (1996) 252–257
17. Bennett, K., Blue, J.: A support vector machine approach to decision trees (1997)
18. Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: Pro-

ceedings of the 13th Inter. Joint Conf. on AI, San Mateo, CA, Morgan Kaufmann
(1993) 1002–1007

19. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research 2 (1994) 1–33

20. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: Randomized induction of
oblique decision trees. In: Proceedings of the Eleventh Nat. Conf. on AI, Wash-
ington, DC, MIT Press (1993) 322–327

21. Utgoff, P.E., Brodley, C.E.: Linear machine decision trees. Technical report, Uni-
versity of Massachusetts (1991) COINS Technical Report 91-10.

22. Y.-J. Lee, Mangasarian, O.L.: SSVM: A smooth support vector machine. Com-
putational Optimization and Applications 20 (2001) 5–22 Data Mining Institute,
University of Wisconsin, Technical Report 99-03.


