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Abstract— Biological sequences from different species are calledr- tributes are competitive with the other similarity attribute sets
tEO'O%Sif thehy eVO'Vedbff?m | sequence of a common ancesfmf SIPECieS andandenhance orthology detection. The evaluation techniques we
they have the same biological function. Approximations of Kolmogorov . L - - - -
complexity or entropy of biological sequences are already well known to emp"?y are: 1. decision tree |-nduct|on from.[S] Wllth anfj without
be useful in extracting similarity information between such sequences — @ variant ofAdaBoost{6] (as implemented in Quinlan’€5.0
in the interest, for example, of ortholog detection. As is well known, the and cross-validation [7] [8], and 2. ROC analysis for compar-
exact Kolmogorov complexity is not algorithmically computable. In prac- _vali ;
tice one can approximate it by computable compression methodsHow- ing Area Un_de_r the C'flrve (AUC) [9] For cross-validation of
ever, such Compression methods do not provide a good approximation to boosted decision tree IndUCtlon, considered are both the results
Kolmogorov complexity for shortsequences. Herein is suggested a new ap-of: 1. employing essentially only an attribute set being evalu-

proach to overcome the problem t_hat compres_si(_)n approximations may not ated, and 2. employing asﬂxceptan attribute set being evalu-
work well on short sequences. This approach is inspired by newonditional

computations of Kolmogorov entropy. A main contribution of the empir- ated.
ical work described shows the new set of entropy-based machine leaming  Similarity based on entropy calculation can be understood to

attributes provides good separation between positive (ortholog) and nega- be segment similaritwvhere the segments can be combinatori-
tive (non-ortholog) data — better than with good, previously known alter-

natives (which do not employ some means to handle short sequences well).a"y_ rearranged. Global alignment teChniqueS' such as Gotoh's
Also empirically compared are the new entropy based attribute set and a_variant [10] of [11] orClustalW[12]?, and local ones, such as
number of other, more standard similarity attributes sets commonly used the |ocal alignment from [13] dMatcher[14] by contrast keep
in genomic analysis. The various similarity attributes are evaluated by cross . . ’ ' .
validation, through boosted decision tree inductionC5.0 and by Receiver matching segments in order, and may have a problem matchlng
Operating Characteristic (ROC) analysis. The results point to the conclu- ABC' and AC B, for long segments3 & C. Standard align-
sion: the new, entropy based attribute set by itself is not the one giving the ment techniques require assigniognstantgap penalties and,
best prediction; however, it is the best attribute set for use in improving the P
other, standard attribute sets when conjoined with them. fg];rgforer’] ma)éh,avf a prog\lem &;)lllgnmg sequentB8t’D and
Keywords—compression, decision tree, entropy, ortholog, ROC. ’,W erec 1s ,Ong' rgua_‘ y, to assume con;tant gap
penalties among different species or even among different se-
guences in a given species is not appropriate in general. The
. INTRODUCTION segment-to-segment technigDeALIGN by [15] [16] is inter-

E considerkolmogorov entropy(or complexity) analy- mediate: without any pre-defined gap penalties, it can handle
-\'. V sis [1] for biological sequence comparison. One of odpatchingABC'D andABD (with a longC); but cannot handle
goals is to calculate approximate entropy in a new and usef@mpletely matchingi BC' and AC'B.
way regarding two or more sequences and their corresponding he entropy or the algorithmic entropy of a finite object is de-
species to serve as the basis of some new, machine learnindi3gd as the length of the shortest computer program to output
tributes, the latter to be used as an aid in detecting ortholo8yis object. Because this entropy value cannot be computed in
Particularly, we can deal with relativeshort sequences which general [1], we adopt various compression methodspiarox-
are usually difficult, either from the entropy estimation or ofmatethe value. We examine two (of many) compressors, the
tholog detection viewpoint. Short sequences have too few coddNIX gzipbased on the well-known algorithh¥ 77 from [17]
words to establish patterns for entropy estimation and usua®jd @ compressor specially designed for genomic daéea-
create unavoided bias [2]. Particularly for distantly related seompressfrom [18]. We discuss in sections below several pos-
quences, short ones have few evidences of matches to beSHle corresponding formulae to use in attribute selection.
ally separated from purely random false positives [3]. Our re- .
sults show good separation between positives and nega’[iveéA'—Applled Framework
compared to good standard methods of entropy estimation. UnMore specifically, regarding the species featured in our data,
der a machine learning framework, employed for comparatie@r problem is to find correspondent chicken orthologs for a
purposes, are a number of attributes sets each based on orgivein human-mouse orthologous pair, and particularly difficult
severalstandardsequence alignment methods. In the presefiiut important for our intended application in agriculture) are
paper, then, besides introducing our new, approximate entrahg immune function cases which tend to be highly divergent
based attributes, we comparatively evaluate all these similafitgtween specieand to be relatively shorf4]. The positive
attributest We empirically show our new entropy based atraining data are of the form fX,, X}, X,,,), where X, X,
and.X,, are orthologous chicken, human and mouse sequences,
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LGenerally, orthologous sequences must exisiibesort of similarity. In [4]
also exploited are differences, but, in the present paper, we consider only variodd he first of these two global alignment methods consider only two sequences
kinds of similarity. at a time, but the third can usefully consider two or more sequences at a time.
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long enough inputs, called Shannon entropy [19], or by adoptingRoughly, the algorithms ofizip and GenComprestook for
compression methods to obtain an upper bound on entropy [2@peated strings (for feasibility, repeated strings of some re-
[21] [22] introduced a compression methG®DNAby consider- stricted length) and replace each repeat with a reference to the
ing inexact match in finding patterns. Importantly, [2] improve@irst occurrence. HoweveGenCompresgnportantly employs

the compression further by exploiting the reverse complemexgproximate instead of exact matching for determining repeats
property of DNA sequences. Also, this latter method producasd also looks for (approximate) reverse complements for NT
a good estimation of entropy, e.g., the estimate approachesshgquences. This looking for matching (exact or approximate)
actual entropyor long enough input[23] proposed a distanceand repeats is why we say above that our entropy based at-
function (@ described below) with nice properties for cluster reributes are based on segment similarity where the segments can
lated sequences. They obtained good results, but, for our nbedcombinatorially rearranged.

to deal (also and in particular) with relatively short sequences,

their formula, when approximated by compression formula is!V- ENTROPYATTRIBUTES FORORTHOLOG DETECTION

not so helpful. In our evaluation below, we work with a simple For two sequences, their concatenation is likely to be highly
variant of their formuld (yielding the “distance” functiolD’ compressibleif a certain percentage of segment similarities ex-
below) and with our own modification of this formula (yieldingists between them. Ourewformula for the “distance” between

the distance functioD below) and can showb works better sequences andt is as follows.

than D’. Our D was explicitly created to handle the case of

short sequences. D(s.1) K(st) B

We choose a number of standard alignment methods from - K(s|S)+ K(t[T)’
many more possibilities for our comparative benchmark‘é’:here'nthe numerator, we compute the entropy for the concate-

global alignment methods from Gotoh [10] a6tlistalW[12]: nation of the two sequencesndt from different species (either
the local alignment method fronMatcher [14]; and, for both NT or both AA), and in the denominator, we compute two

segment-to-segment alignment (without rearrangement), wdltlonal entropies. The long sequerges the result of con-

chooseDIALIGN by [15], [16]° catenating together all the sequences in our datexeefpts for
' the species that sequencéelongs to.T is similarly based on
I1l. ENTROPY AND STRING COMPRESSION the sequences excefrom ¢'s species.

. i ) . There ares65 triples of orthologs in our data s&tFor each

Given a compression method and a stringve approximate qrtholog, we produce three of the long sequences, one for each
the entropyK'(s) of the strings by the lengthy(s) of the com- ¢ the species, chicken, human, and mouse (minus that species’
pressed version of gene for the ortholog). Hence, each long sequence for a given

We discuss next the entropy of the concatenation of Wtholog is the concatenation 65 — 1 = 564 sequences.For
stringss andt¢. This combined entropy of andt¢ is approxi- example, ifs denotes a gene sequence from chicken @i
mated byg(st), the length of the compressed string frem It {he |ong chicken sequence combined from all but the chicken
is known, from [1], thati'(st) and K (¢s) will share similar val- - sequences, the conditional entropys'(s|S) measures the en-
ues, up to an additive constant. Hengst) is expected to be opy in s given for free knowledge of the rest of the chicken
similar tog(ts). genome (in our data set). There are two reasons for us to use

We also require conditional entropy (t|s), defined by the thjs conditional computation: 1. Compression usually gives bad
shortest program to compute the stringjiven the strings for - performance for short strings — any encoding (with the out-
free. The relation between the concatenation entropy and POt of constant length blocks) may produce blocks with length
ditional entropy [1] inspires the approximation (correct up to @ose to or even larger than the length of the original data — the

lower order term), long sequences will have a better compression rate than the short
sequences, and our data set consists of sequences with varied
K(t|s) ~ K(st) — K(s). (1) lengths, and, therefore, our conditional computation can assuage
Hence, we use(t|s) ~ g(st) — g(s) to approximate the condi- bias between sequences with different lengéims} 2. There are
tional entropykK (¢s). always certain common regions between different species, e.g.,

For our entropy attribute set we compress the nucleotide {§8ions with highz + C' content in NT sequences — such re-
NT) sequences and the amino acid (or AA) sequences, for e&¢ns’ similarity has nothing to do with orthology, so we want

of three different species, chicken, human, and mouse. to remove it from consideratidh.
Without the conditional calculation$) in Eq. 2 above becomes

3Thisvariant is as good for machine learning attributes as their original, adad’ just below.
is helpful for understandingur new variant.

4We confine our study to comparing’ and D since there are so many ap- , K(st)
proaches, including additionally, [24] [25] [26] — each also appropriate only D'(s,t) = ———~—. 3)
for long sequences. K(S) + K(t)

50ur purpose isiot to explore as many attributes as possible from various )
alignment methods, but to seek attributes based on “different” types of method§Available at http:/www.ccl.rutgers.edusuyang/CHM/byName.html, cu-
We would expect, from the use of multiptisparatemethods, a better chance rated as described in [27].
of separation between positives and negatives, but that similar types of align-As noted above, we essentially need not worry about the order of single se-
ment methods would giveelatively similar separation results to one anotherquences in concatenation for the long sequence for each species.
Similarly, we do not investigate all prior entropy estimators other tiapand 8Such conditionals in the numerator would not make sense and do not provide
GenComprest calculate new attributes. useful or reasonable attributes.



The formula forD’ is, in turn , a useful, approximatdge- low sequence similarity). There are, thé075 negative data

braic variantof the distance function given by [23], i.e., in total, meeting these requirements [4].
K(s)— K(s|t) 2K(st) — K(s) — K(t) To eval_uate how our entropy based attribute set is superior to
d(s,t) =1— K(st) ~ K (st) . other attributes, we adopt three methods:

1. Cross-validation: The ultimate goal for machine learning ap-
lications is to predict unknowns. We use cross-validation with
>.0to judge the extent that one attribute set is more useful than
another in this regard. This is discussed further in Sec. V-A.
N.B. The Standard Error in the various percent errors reported
is < 0.05%.
2. Salience in decision tree: F@5.0s first/bestdecision tree,

An outcome of our experiments is that the attributes frofhe attribute whose value is tested on the top explains more data
entropy calculation are important for ortholog predictions. Agan those attributes further down the tree. This provides a crite-
noted above, the training is done with triples from all thregon to separate salient attributes from not-so-salient ones. Our
species, chicken and the two mammals human and mouse. Mé&ult showgone of) the entropy based attribute(s) is always on
employtwo mammals (human and mouse) in place of one fesp, while included in the attribute sé@tees not shown).
extra help from the resultant “triangularization” of data. It iB. ROC analysis: The ROC curve is commonly used in diag-
inspired by the idea that multiple sequence alignment usualigstic research. A measure computing the area under the ROC
performs better than pairwise alignment for more evidences@frve (AUC) is frequently used as a criterion to see if one at-
matches. tribute is more useful than another. This will be further dis-

After computations from entropy/compression and the sestssed in Sec. V-B.
eral different alignment methods (plesassinformation dis- For the various evaluation methods, we carried out several series
cussed just below)i7 attributes are compiled for each triple. Weof experiments each based on comparing various attribute sets.
have four attributes from Gotoh’s global alignmeiit attributes
from DIALIGN, six attributes fronClustalW 12 attributes from A. Cross-validation
Matcher, and four attributes from each compression method.
Also, we have one attributdassdescribing the biological func-

tion class with six different (discrete) values, e.g., defense ority ofD to D' andGenG © azio. | h
immune system [287; see also [29]. The other five categorie§uloerlorl y Ot to " andf>ent.ompresto gzip In each exper-

are CD(cell division), CS(cell signaling), SM(cell structure)mﬁ'et”t o{)the ?ext th Seres EJ/'(_\)’fBlgeIOW) Wel.edmf.’m'o‘.’;’gg
GPE(gene, protein expression) and M(metabolism) of the tvl?g ree boosting and carry olt-foid cross-validation, wi
mammals. The biological function can be unknown for thepeats. Thelassinformation is included ireachexperiment,

chicken counterpart, i.e., for the target sequence. Otbext- Wwhere it sgrves as'a bac.:kgroungl attrlbutg. )

tributes are continuous attributes. A. The point of this series (of five experiments) is to compare
Regarding the compression approximation of the algorithm{@/10US similarity assessing attribute sets with one andtlyer

entropy, as noted above, we employ two methagsp (result employing each such attribute set one at a t{iclassis always

not shown) andSenCompressFor comparison, the size of theincluded). For each experiment we choose one attribute set from

long, all-but-one-combined sequences is aro@imj 000 bases. & single one of the five similarity assessing methodthaset

and the size of a single gene varies from a few hundred to a f@2tributes to use. ~ Each chosen attribute set will have size
thousand bases. depending on which similarity assessing method it corresponds

For C5.0 prediction, the vectorized data with the (up ) to. For instance, there are six (plus one) attributes in the set if
attributes are used for training. Apart from the collection a¥e choose&ClustalWbut12+1 attributes in the set if we choose

565 orthologs, namely, the positive data, we need to obtain A 1CNer

set ofnegativedata for a complete training set for classificatiorf' The point of this series (of six experiments) is to compare

For ROC analysis too, negative data are necessary for the cOft similarity assessing aftribute sets with one anolfyeeval-

struction of ROC curves. We employ a criterion similar to thé’cating the effect of leaving up to one duiith theclassattribute
g%/ays in). In this series, the same five similarity assessing at-
i

of [4] for the negative data generation. We collect the negativ loved as in A. H i
from each possible combination 6K, Y, Y;.), whereY;, Y. tribute sets are employed as in A. However, we leave up to one

are othologous, buk, is not orthologous &}, Y,,,. Addition- such set out. This is to see how, if at &5.0s performance is
ally, from such a big set, we remove certain “easy” triples eith@feakened by each removal. ) )
whose classifications are trivial (e.g., non-orthologous due to big Tab- I, for the series, A, the entropy/compression attribute

difference between sequence lengths) or which are considef&g9ives the third best prediction among all similarity assessing
not informative, in the sense of building a classifier (e.g., tgylribute sets. The attribute set derived frGinstalWis the one,
when by itself, yields the best prediction, and this with only six
9E.g., the four attributes per compression method are from NT vs. AA s@dlus one) attributes in its attribute set.
quences gor_nbi_ned with comparing ch_icken to mouse vs._human separately. Dufn the series, B, it can be seen that the entropy/compression
to space limitations, we can not describe in detail the attribute set that goes with . . L. )
each other similarity assessing method. ased attribute set dominates the overall prediction. &\ith

10http:/itigr.org/docs/tigr-scripts/egastripts/rolereport.spl that single attribute set, we have the worst prediction rate.

By Eq. 1, Eq. 3 is essentially the reciprocal @f- d()". There-
fore, we can use Eq. 3 as a representative to do further ¢
parisons between Eq. 2 ad() from [23], if each is used as an
attribute in a classification task.

V. EXPERIMENTAL RESULTS

For space limitation we omit details re our first two series
cross-validation experiments showing, re ortholog detection,



TABLE |
RESULTS OF10-FOLD CROSSVALIDATION , COMPARING THE FIVE
SIMILARITY ASSESSING ATTRIBUTE SETS

(2]
(3]

[4]

Attribute Set Missed in Testing: +/-(%)

A: only one in (&clas9

B: at most one out

(5]

w. all attr. - 41.9/15.6 (0.87%)
Matcher (W) 71.7/53.7 (1.89%) (/o) 41.3/16.3 (0.87%) [6]
Gotoh (w.) 70.8/67.7 (2.09%) (/o) 43.2/ 15.0 (0.88%)
ClustalwW (w.) 45.3/46.1 (1.38%) (w/0) 41.9/15.5 (0.87%) (7]
DIALIGN (W) 51.7/51.8 (1.56%) (/o) 40.1/16.1 (0.85%)
GenCompress  (w.) 101.6/12.6 (1.72%) (w/0)47.9/50.3 (1.48%) L&

9
The results of Tab. | together can be understood to miten: el

entropy based attribute set by itself is not the one giving thleO
best prediction; however, it is the best attribute set for use il
improving the others when conjoined with them. [11]

B. ROC Analysis [12]

In the first part of this series, we constructed the ROC curves
for single individual attributes (e.g.q;) and computed their
AUC [9] to see if one attribute gives more prediction powen3]
than another. Given a classifiey > ¢ for some constant 14]
predicting positive data (assuming most positives give Iarg[er
values than most negatives, e.g., as with identities for tvias]

aligned sequences), we can construct the associated ROC curve

on the unit squarg0, 1] x [0,1] by plotting all of the points [16]
(#(false pos)/#(neg), #(true pos)/#(pos,)). The meaning
of AUC is the probability of correctly labeling a pair of positivem]
and negative data, through the measuring;of
By measuring the AUC value for all single attributes, the eft8l
tropy based attributedo notgive good results compared to at-
tributes from many other standard alignment methods. E.g., fod]
the (AUC) bestentropy based attributd)(C, H), our entropy 20
based attribute between AA sequences for chicken and hun{an],
we haveAUC = 0.927. Whereas, we havaUC = 0.994 for [21]
the (AUC) best attributédcoton(c, ), Gotoh's percent iden-
tity for NT sequences between chicken and human. Howevgg)
when two attributes are considered simultaneously, the AUC
criterion prefers the combination a@in entropy attribute with 55
an attribute from identities The AUC value for two attributes
is computed by a linear transformation from two dimensions to
one, followed by the regular AUC computation (where the Press)
jected angle is chosen to maximize the AUC value). Moreover,
while the identity attribute can be changed to another standé&fel
similarity based attribute without lowering too much the AUC
value, the entropgannotbe substituted by a non-entropy at{26]
tribute without significantly lowering the AUC value. Hence, the
entropy attribute set is an excellemtlperfor ortholog predic- [27]
tion. We haveAUC = 0.996 from the two attributesD(C, M)
andidgoeton(c, h), as thebestcombination. Supported, then, is[28
the same conclusion as from the series A and B abovenbtirat
(best) entropy based attribute set shows its superiority (only)
when conjoined with standard similarity assessing attributes
29
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