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Abstract—Active learning is a common strategy to deal with
large-scale data with limited labeling effort. In each iteration of
active learning, a query is ready for oracle to answer such as
what the label is for a given unlabeled data. Given the method,
we can request the labels only for those data that are essential
and save the labeling effort from oracle. We focus on pool-based
active learning where a set of unlabeled data is selected for
querying in each run of active learning. To apply pool-based
active learning to massive high-dimensional data, especially when
the unlabeled data set is much larger than the labeled set, we
propose the APRAL and MLP strategies so that the computation
for active learning can be dramatically reduced while keeping
the model power more or less the same. In APRAL, we avoid
unnecessary data re-ranking given an unlabeled data selection
criteria. To further improve the efficiency, with MLP, we organize
the unlabeled data in a multi-layer pool based on a dimensionality
reduction technique and the most valuable data to know their
label information are more likely to store in the top layers. Given
the APRAL and MLP strategies, the active learning computation
time is reduced by about 83% if compared to the traditional active
learning ones; at the same time, the model effectiveness remains.

Index Terms—active learning; high dimensionality; large-scale
data; pool-based sampling.

I. INTRODUCTION
A. Motivation

Given massive data for analysis, active learning (AL) is one
of the promising solutions where we use as small as possible
set of labeled information to save human effort for effective
modeling. In active learning, queries that follow a data select-
ing strategy pop up constantly for oracle or human annotator
to answer. In each iteration of active learning, the typical query
is to label a few unlabeled data that could be hard to decide
their label information by premature models. A common set
of strategies for unlabeled data selection includes using the
criteria of uncertainty, diversity, or representativeness [1] to
name a few to decide which data may be crucial where we are
eager to know their label information for effective modeling.
One issue that could be overlooked by most active learning
scenarios is to ignore the unbalanced ratio between labeled
and unlabeled data for learning. More specifically, we may
have a relatively small set of labeled data for training and
a huge set of unlabeled data for ranking according to their
properties such as the aforementioned criteria in each active
learning iteration. That creates incompatible time consumption
on the (labeled) data training and the (unlabeled) data ranking

even the model training usually owns higher computation
complexity than data ranking. In this work, we propose a
novel approach that can speed up the data ranking procedure
based on approximate criteria computation, hierarchical data
arrangement and flexible ranking decision. The experiment
results show that the overall active learning computation can
be deducted by about 83% using the proposed active learning
approach if compared to the traditional active learning ones. At
the same time, the model effectiveness more or less remains.

We propose the Anti Re-rank Pool-based Active Learning
(ARPAL) and Multi-Layer Pool (MLP) for efficient active
learning given massive high-dimensional data. The focused ac-
tive learning scenario is a so-called pool-based active learning
where we have a set of unlabeled candidate data available for
querying from oracle in each run of active learning. A close
analysis reveals that how much the computation we need for
active learning is (at least) decided by:

1) the time for model training given the labeled data;

2) the time to compute the ranks of unlabeled data given
pre-defined data selection criteria; and

3) the time to rank the unlabeled set according to the
selection criteria; and

In our opinion, the time for model training can often be
negligible because the size of labeled data is much smaller
than the size of unlabeled data in most big-data applications.
To speed up the active learning computation, we then focus on
the second and the third parts. A naive thought is to compute
the data ranks and operate the sorting according to the ranks
when it is really necessary to do so. Also, we can obtain the
ranks based on an approximate computation when the exact
rank computation from a premature model is not meaningful.
It may even shorten the time for active learning. In an extreme
case, we can select the next unlabeled data to label based on
the purely random strategy. Therefore, the time we need to
spend on the second and the third parts is zero. Apparently,
the random strategy is far from a good choice because we may
need a much larger set of data for training to reach an equally
effective model. To work on the trade-off, making the model
more effective and trying not to spend too much time on data
re-ranking simultaneously is the central goal of the work. In
the next subsection, we elaborate the details of the proposed
method.



B. The Proposed Approach

In order to overcome the shortcomings of the traditional
pool-based active learning, we propose a few strategies to
speed up the active learning computation given massive high-
dimensional data. In the proposed ARPAL approach, we first
investigate how necessary for each data re-ranking in the active
learning iterations. Intuitively speaking, when the models
between two consecutive iterations do not change much from
each other, we may think that the rankings on the unlabeled
data based on the two models differ very little. Therefore,
we do not compute the data ranks nor perform the re-ranking
to save the computation. For high-dimensional data, the time
that we can save on computing the data ranks is a lot. Because
most of the computation is associated with dimensionality. We
shall save more from a second strategy for data arrangement
with multi-layers where dimensionality reduction is applied
in particular for high-dimensional data. We have to point out
that in the early stage of active learning where the model does
not yet converge to a stable one, we do not trust much about
the prediction of the model nor the criteria computation on
e.g., uncertainty that is derived from the model. Although a
frequent data re-ranking is expected in this period; however,
we can adopt an approximate rank computation to improve
the efficiency.

As the second MLP strategy, we transform the traditional
pool in active learning to a multi-layer pool where different
dimensionality reduction is applied in different layers for an
approximate to exact data selection criteria computation from
the bottom to the top layers. More specifically, we gradually
select the unlabeled data for querying from the bottom layers
to the top layers. In bottom layers where we have a relatively
huge set, we compute data ranks approximately. For instance,
we may project the data into a low-dimensional space to
decide the data ranks in that space to save the time that we
need to spend for high-dimensional data. As we go from the
bottom layers to top layers, we compute data ranks based on
a relatively higher and higher dimensional inputs until in the
top layer, where we attempt to compute the exact data ranks
given the full set of features, but on a small set of data. We
expect that the most informative data for AL query can be
found in the top layer set in most cases. We shall mainly
use Principal Component Analysis (PCA) to find the low-
dimensional structures for data. In summary, we trade the
model effectiveness for an efficient result. As we test the
proposed approach, we find out that the model effectiveness
that we give up may not be much if a careful treatment is
adopted.

We use the prediction accuracy and the execution time to
evaluate the two proposed strategies. As a result, we observe
that the accuracy from the traditional AL and the proposed
ARPAL and MLP combined AL remain to be similar while
the proposed method perform much more efficient than the
traditional approach. In the rest of the paper, we first review
the past work on active learning in Section II and introduce
the proposed method for active learning given massive high-

dimensional data in Section III, which is followed by the
experiment results in Section IV. After that, we conclude the
work in Section V.

II. RELATED WORK

Various active learning methods have been proposed in
the last decades to improve the model effectiveness with a
reduced effort on data labeling. Especially, new approaches
were developed in recent years to echo the big data trend
for real applications. In traditional active learning, the learner
wants to find out a set of unlabeled data which is the most
important part to be included in training. In other words, if
the model has the least confidence on labeling a particular
set of data, it is preferred to ask oracle for the information
and the model based on the newly acquired labeled data and
previously labeled data can achieve better accuracy than the
one without the newly acquired data. The aforementioned
strategy is the so-called uncertainty sampling, first introduced
by Lewis et al. [2]. Other criteria for unlabeled data selection
include diversity and representativeness. Du et al. [3] proposed
an integrated criterion which combines representativeness and
informativeness to choose the most suitable instances to be
included in modeling. Huang er al. [4] considered a set
of similar information based on a min-max view of active
learning. There is another interesting query strategy, called
query-by-committee (QBC) [5], which uses many subsets of
training data to build sub-models. After that, all of the sub-
models predict the label of instances and vote to find the
consensus. The set of instances that receive little consensus
should be the set to ask for help from oracles.

To speak of incorporating learning models in active learning,
Tong et al. [6] applied an uncertainty sampling algorithm
in SVM training. They provided a theoretical motivation for
the algorithm using the notion of version space. Kremer
et al. [7] discussed the advantages of adopting SVMs in
active learning. Joshi ef al. [8] presented a margin uncertainty
measure in multi-class cases. The uncertainty measure is based
on the difference between the probability of two most probable
classes where it is hard for the learner to determine the data’s
class. Fu et al. [9] surveyed existing works on active learning
from an instance-selection perspective. Settles summarized the
active learning methods in a well-known book [1].

Many active learning methods are applied to the real world.
Demir et al. [10] and Tuia et al. [11] applied active learning in
image recognition. Donmez et al. [12] introduced the proactive
learning to relax unrealistic assumptions, and it relies on
a decision-theoretic approach to jointly select the optimal
oracles and instances for annotation. The work can be applied
to multi-oracle applications such as using active learning in
smart factories. To deal with some special active learning
applications, Persello et al. [13] studied a cost-sensitive active
learning where the cost of labeling an unlabeled instance
depends on the past labeling effort. One possible application
of the work is in a smart factory where labeling cost for a
new instance may be associated with the past labeling efforts,
if the labeling implies walking from one place to another.



Kapoor et al. [14] proposed a method that can balance the
cost of misclassification and the cost of annotation in the active
learning procedure.

Overall, most past active learning algorithms were focused
on developing a good strategy for unlabeled data sampling
or designing a good scenario for applying active learning in
real cases. However, very few addressed the computation issue
of active learning; more specifically, the computation that is
needed for large-scale data or data with high dimensionality.
That is the main motivation for this work.

III. METHODOLOGY

In this section, we introduce the background and scenarios
of active learning that are related to this work. Following that,
we discuss the issues that we need to pay attention to for active
learning. That explains why we develop the Anti Re-rank
Pool-based Active Learning (ARPAL) and Multi-Layer Pool
(MLP) to improve the performance of active learning systems.
ARPAL can avoid the unnecessary re-ranking of the unlabeled
data in the pool and MLP can reduce the computation time
for each re-ranking. The details of the two methods are
discussed in the following two subsections. Overall, the active
learning system that utilizes ARPAL and MLP can gain much
improvement over the computation time while maintain the
similar model prediction power.

A. The Background and Issues of Active Learning

1) Active Learning Scenarios: There are three traditional
approaches of active learning [1]: (1) query synthesis, (2)
stream-based selective sampling, and (3) pool-based sampling.
In the query synthesis, the assumption is that the learner has
a definition of the input space (also, the feature dimensions).
The learner may query the oracle about the labels of any (real
or synthesized) unlabeled data in the input space. Query syn-
thesis has good results in some special applications. However,
the learner generates arbitrary synthesis data which may be
meaningless and irrelevant for an oracle to recognize and make
judgment.

An alternative to synthesizing queries is selective sampling,
also called stream-based active learning. The assumption is
that obtaining an unlabeled data (may be from an unknown
distribution) is cheap and continuous, and then the learner
can decide whether or not to request its label. Some com-
mon strategy is to select a threshold and request the label
information when the unlabeled data reaches the threshold
passively. There are issues and drawbacks for the stream-based
sampling approach. Some unlabeled data may not reveal its
importance when it arrives at a particular moment, and can
become valuable later when the data is no longer available.
To solve the problem, we can keep a buffer for active learning
to save unlabeled data in that buffer, so-called the pool and
selection criteria can then be used to find the most valuable
data from the pool to ask their label information. It is the idea
of pool-based active learning.

Pool-based active learning, the most popular scenario for
active learning, assumes that there is a small set of labeled

data L and a large pool of unlabeled data U available. Initially,
a learner is built from L, and it continuously selects a set
of unlabeled data from the pool, according to a pre-defined
selection criterion for querying and adds them into the training
to find the next-run learners. The procedure goes on until we
feel satisfied with the result. For many real-world situations,
a large amount of unlabeled data can be easily collected at
once and pool-based active learning is appropriate to apply. In
this work, we assume
much smaller than the size of unlabeled data. The pool should
reserve as many unlabeled data as possible if the memory is
enough to store them and the learner is not sure about the
data’s potential value in some later stage of active learning. In
this work, we focus on the pool-based active learning where
we have a massive high dimensional data in the pool.

Fig. 1 elaborates the detail procedure of the focused pool-
based scenario. Initially, we use a small training set to build
a preliminary model, a model likely to be far from perfect
for prediction. The preliminary model is used to estimate the
label information of the unlabeled pool and then we select a
set of data for querying with a pre-defined criterion, such as
uncertainty sampling. The active learning system shall rank
the pool data based on the pre-defined uncertainty measure
and then choose a small set of unlabeled data with the top
ranks for an oracle to label. After we add the newly labeled
data to the training set, the model should be re-trained, and
the information value in the pool will be modified again and
the iteration goes on until we have a satisfiable model.
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Fig. 1: Pool-Based Active Learning

We have to emphasize that the traditional pool-based AL has
to calculate the data information for ranking and rank the pool
in each iteration. It creates a bottleneck in the active learning
computation. The difficulty increases when we have high
dimensional data. We propose ARPAL and MLP strategies
to solve the problem. Before we go on to discuss the details
of the two strategies, we discuss the uncertainty sampling that
we adopt in this work.

2) Uncertainty Sampling: The active learning system needs
to have query strategies to measure the utility of unlabeled
data. There are many proposed query strategies and one



of the most common and effective strategies is uncertainty
sampling [15]. Others include checking the data diversity or
representativeness. What is different between the three is that
data diversity and representativeness can be estimated without
knowing any label information, therefore can be computed off-
line as long as the data features are available. In other words,
we should focus on the uncertainty computation which needs
some online effort to obtain the result.

To speak of the uncertainty computation, the basic idea
is that the learner should focus on the unlabeled data that
has low confidence rather than high confidence on its label
information. Probabilistically, we can estimate P(y | x) to
judge the confidence level on labeling the unlabeled data with
features x. The judgement should adjust according to either a
binary classification or multi-class classification problems. For
the binary case, a low label confidence on a given unlabeled
data x may be indicated by a probability of P(y | x)
close to 0.5 for y € {1,—1}. It is quite possible that x is
located near the decision boundary in this case. There are
three different uncertainty strategies to measure the utility of
instances: (1) the least confidence computation, (2) distance to
margin estimation, and (3) entropy estimation. In this work, we
follow Joshi et al. [8] to choose the margin-based uncertainty
sampling for the data selection strategy.

B. Anti Re-Rank Pool-Based Active Learning (ARPAL)

In traditional pool-based active learning, a drawback of the
method is that it has to rank the unlabeled data pool all the
times and it slows down the system’s performance. We observe
that many of the data ranking and data rank computation may
not be necessary. If the models are stabilized in the active
learning procedure, the models from consecutive iterations as
well as their predictions may be similar. Therefore, the data
ranks remain to be similar and we do not need to re-calculate
the data ranks again. It is more likely to be in this case if we
run into the late stages of the AL procedure where we may
have enough data to understand the whole distribution. On the
other hand, if the models are not reliable, we may need to
add more labeled data for a better training. In this case, the
data rank computation based on the model may not be reliable
either. For the first situation, we try to avoid unnecessary data
re-ranking and for the second case, we may focus on the data
rank computation for a small subset of the whole unlabeled
pool. We propose ARPAL to deal with the first case and Multi-
Layer Pool (MLP) for the second case.

According to the above, we only need to check the differ-
ence between the current model and the previous model to
make the decision on re-ranking. If the difference is large
or the model changes a lot in a moment, we perform re-
ranking in the pool, otherwise do nothing if the difference
is small or the model changes very little. All we need is a
criterion to judge whether or not the model changes more or
less than a pre-defined threshold. Let us use the perceptron
learning algorithm for binary classification as an example to
illustrate the idea. In the perceptron learning, we compute the
inner product }_; w;z; and use it as the decision boundary

for binary classification for a given input x = (z1,zo,...)
and a model weight w = (w1, wa, ..., ). Similarly, there is
also a weight vector w to specify a model for linear SVM. In
either case, we can compute the well-known cosine similarity
to estimate the similarity between the current model w; and
the previous model w;_ which is the model a few steps back.
(In between the model does not change at all.) The similarity
measure ranged from zero to one, is defined as:
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In ARPAL, we calculate the similarity between the models
in two moments. Also, we set a threshold 0 < ¢ < 1 to
decide whether or not to perform the re-ranking. That is, if
the model similarity is less than the pre-defined threshold o,
we should re-calculate the data ranks. This approach reduces
the frequency of unnecessary re-ranking and therefore can be
more efficient than the traditional AL. The complete algorithm
of ARPAL is shown in Algorithm 1.

Input : o: similarity threshold ;
q: number of samples selected by the query at once ;
L: labeled data for training ;
U: unlabeled data in the pool.
Output: X: a set of labeled samples to be added to the
training set
repeat
Use L to train a model ;
if MS (Eq. 1) < o then
Compute margin for each x € U in the pool ;
Rank the pool according to the margin criterion ;
end
// Keep the previous ranking otherwise.
Initialize X to the empty set (X = @) ;
Add the ¢ most uncertain samples {x1,Xa, ...
(highest ranks from the pool) to X ;
Request oracle for X’s labels ;
Add X = {(x1,%1),...,(xq,Yq)} to training set L
until Model reaches its pre-defined accuracy;,
Algorithm 1: Anti Re-rank Pool-Based Active Learning

s Xq}

ARPAL overcomes the inefficiency of traditional active
learning. We compute the model similarity and bypass the
re-ranking if the similarity between the model now and the
model in a previous moment is high.

Let us also discuss the similarity measure when a nonlinear
SVM is chosen to be the classifier. In a nonlinear SVM, instead
of dealing with the weight vector w, we store the support
vectors {SV;, } and the corresponding Lagrange multipliers
{a+, } where t,, is the number of support vectors at the ¢-th
iteration. The following formula describes how to compute the
similarity between the current model and the previous model:
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where the ¢,/ is the number of support vectors for the previous
model. We use Eq. 2 to decide whether or not we need another
re-ranking in the active learning procedure.

C. Multi-Layer Pool (MLP)

We propose another strategy for efficient active learning.
In traditional pool-based active learning, the leaner may take
a while to compute the data ranks given a huge unlabeled
set to work with. After all, there are only a few queries that
are associated with high ranks and those shall be sent to
oracle for labeling information. We believe that such large-
scale screening should be avoided. It is even more serious
when we deal with high-dimensional data. At the same time,
we also observe that the model in the early stage of active
learning procedure may not be reliable. Therefore, a wise data
rank computation is important.

To deal with the situation, we consider applying approxi-
mate computation and exact computation for likely-to-be low-
rank data and high-rank data respectively to save the compu-
tation. More specifically, we utilize dimensionality reduction
to find the low-dimensional projection for the unlabeled data
to have a quick understanding of the data. After that, the data
that are associated with high ranks can be checked again and
again for a more precise computation until we have the final
set of querying data for oracle. Fig. 2 shows such idea. The
data structure underneath is a hierarchical structure where we
organize the whole unlabeled data in the structure from the
bottom to the top with fewer and fewer number of data. At
the same time, we consider the dimensionality reduction with
more and more dimensionality from the bottom to the top. By
having that, we have an approximate to an exact computation
from the bottom to the top.

1) Principal Components Analysis: We simply choose Prin-
cipal Components Analysis (PCA) [16], one of the most
well-known dimensionality reduction methods to realize the
proposed idea. The main idea of PCA is to find a low-
dimensional projection of the original data where the data
relation can be kept as much as possible. More rigorous, we
find the projection that can maximize the variance between
data points or the direction that is associated with the largest
eigenvalue to be the principal component and we continue
finding a series of dimensions to be the ones that we keep
the data distribution as much as we can in a low-dimensional
space. The first few principal components will retain most
of the variance present in the original attribute set. In this
paper, we use the eigenvalues to decide how many principal
components we should keep:
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where Z?Zl A; is the sum of all eigenvalues, and r is the
ratio accounted for the first £ eigenvalues. We set a threshold
r* somewhere between 65% and 95%, and find the & which
is the smallest integer for which » > r* where we retain &
PCs.
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Fig. 2: The Multi-Layer Pool structure. From the bottom to
the top layers, we have a large to small set of data. On
the other hand, we perform an approximate (applied in low
dimensionality) to an exact (applied in high dimensionality)
data rank computation from the bottom to the top.

2) Multi-Layer Pool Building: Assuming we want to build
a k layers pool, we use a dimensionality reduction method
such as PCA to transform the data set into the sets in
different dimensional space and create £ models via training
sets on those different dimensional space. More specifically,
the model with the lowest dimensionality will measure and
rank the uncertainty value of all unlabeled data based on the
limited information from what we can observe from the low-
dimensional space to build the first layer of the pool. After
that, part of the data with higher ranks in the first pool shall
be sent to higher layers for finer measurement. The model in
the second layer will re-train the model, re-calculate and re-
rank those unlabeled data to have a more accurate ranking to
build the second layer of the pool, and we repeat the procedure
until we reach the k-th layer. The structure of the multi-layer
pool is displayed in Fig. 2.

To decide how many layers that we need, we compute:

Layer, ;. = Ll)) ln(m)—‘ , %)

to find the number of layers, where m = |U| is the
amount of all unlabeled data. Intuitively, the number of layers
should be correlated with the number of (unlabeled) data for
ranking. Taking logarithm makes sense due to the pyramid-
like structure of MLP. On the other hand, we also need to
consider not too many layers because we perform training,
rank computation and sorting at each layer which may create
extra cost.

After determining the number of layers, we have to decide
the number of data in each layer. In Eq. 5, we have m; data
in the i-th layer, which is decided by the number of data and
the dimensionality for the data. To go from the ¢-th layer to
higher layers, we should select more data if the PCA suggests
a low ratio r; (Eq. 3), which implies a projection to a low-
dimensional space still keeps important information from the
original data.



TABLE I: The number of data in different subsets of active
learning procedure.

# of instances

Initial training set 100

Unlabeled query set 50000

Test set 2000

The number of data in a query 10

m if i=1
1—-7r) —— if +=2,...,Layer

( z) ln(m) ) ’ Y€Ttotal

IV. EXPERIMENT RESULTS

In this section, we demonstrate the experiment results as
well as their evaluation according to different methods. Before
go on to present each experiment result, we first introduce the
dataset for evaluation in Subsection IV-A, which is followed by
the elaboration of the experimental settings (Subsection IV-B)
in this work. The rest of the section is spent on all the
experiment results and the discussion.

A. Dataset and Preprocessing

We evaluated the proposed method on the well-known
MNIST hand-written digits dataset which consists of 10-class
digit images from ‘0’, ‘1’, to ‘9’. The images were centered
in a 28 x 28 image, with each pixel as a feature a total of 784
features for our training. The total size of the dataset includes
60, 000 examples, and a test set of 10,000 examples.

Given the MNIST dataset, we first apply min-max normal-
ization to scale all numeric values to be within the range of
[0, 1]. Afterwards, we choose PCA (Section III-C1) to reduce
the data dimensionality.

B. Experimental Settings

In pool-based AL, we have a small labeled data to train a
preliminary model initially. Starting from the first step, a large
set of unlabeled data should be used as the possible candidates
for querying oracles. In each step, we ask oracles for about 10
queries and add the ten newly labeled data to the training set
and hope to have an improved model after the re-training. On
the side, we use a separate test set to continuously evaluate the
model effectiveness. The number of data for different parts of
active learning is presented in Table I. After all, we perform
250 iterations in all experiments and record the accuracy and
computation time. We compare several AL approaches, the
traditional AL, the AL with either ARPAL, MLP or both,
as well as the random sampling for our evaluation. In the
experiments, we chose SVM [17], [18] to be the base learner.
Both of the linear and nonlinear models shall be adopted for
evaluation.

C. Anti Re-rank Pool-based Active Learning

1) Linear Model: We take turns to evaluate the proposed
ARPAL and MLP strategies for active learning with massive
high-dimensional data. In the first series of experiments, we
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Fig. 3: Active learning with ARPAL from linear SVM.

TABLE II: Active learning with ARPAL from linear SVM.

Computation Time | # of Re-ranking
ARPAL (0 =0.9) 0 hr 57 min 20 sec 17 times
ARPAL (0 =0.95) | 1 hr 14 min 52 sec 34 times
Random 0 hr 23 min 13 sec 0 times
Traditional 6 hr 25 min 48 sec 250 times

start with the simple linear SVMs as the base model for
evaluation. We compare the linear SVM-based active leaner
with or without the ARPAL strategy for the evaluation. More
specifically, we compare between the traditional pool-based
AL, the AL with random sampling and the AL with ARPAL,
as shown in Fig. 3.

In Fig. 3, z-asis indicates the number of data that is
manually labeled by oracles along the AL procedure (which
is equal to the training set size) and y-axis shows the model
accuracy. The threshold to deciding the similarity of models
in consecutive steps is set to be either ¢ = 0.9 or ¢ = 0.95
from Eq. 1. In general, we have the AL with ARPAL perform
similarly to the traditional AL without ARPAL in terms of
model accuracy. On the other hand, all methods with active
learning are indeed perform better than the labeling with
random strategy. We performed ten times and compute the
average for the random strategy result.

To speak of computation time, we just need to spend a little
more than the random strategy for the active learning with
ARPAL strategy. On the other hand, we enjoy a significant
computation time reduction, about 85% if compared to tradi-
tional active learning, as shown in Table II. Note that choosing
o = 0.95 doubles the times of re-ranking if compared to the
case of o = 0.9.

2) Non-Linear Model: In this part, we consider using
nonlinear model or nonlinear SVM to be more specific as the
base learner for the evaluation. Extending to the more powerful

TABLE III: Active learning with ARPAL from nonlinear
SVM.

Computation Time | # of Re-ranking
ARPAL (6 =0.9) 1 hr 43 min 09 sec 4 times
ARPAL (0 =0.95) | 1 hr 52 min 11 sec 8 times
ARPAL (fixed) 2 hr 24 min 12 sec 25 times
Random 1 hr 24 min 55 sec 0 times
Traditional 9 hr 37 min 03 sec 250 times
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Fig. 4: Active learning with ARPAL from nonlinear SVM.

TABLE IV: The time index of re-ranking in the active learning
with ARPAL from nonlinear SVM.

ARPAL ARPAL ARPAL | Random | Traditional
(c6=09) | (6 =0.95) (fixed)

1 1 1 None 1

8 4 11

26 8 21 - 3

72 16 . . -
33
61 . B B
107 - - 249
225 241 None 250

model than before, we would like to see the advantage of
applying ARPAL strategy to active learning. In Fig. 4, we
observe that AL with ARPAL performed similarly to the
traditional AL, while both of them performed better than the
random sampling approach. Compared to the linear case, we
can see a larger gap between the AL with or without ARPAL
and the random sampling. That is, the nonlinear AL with or
without ARPAL can have about 5% higher accuracy than the
one from linear AL, especially in some later stage of training.
Regarding to the computation, we again see the advantage of
applying ARPAL to AL, as shown in Table III. Adopting the
ARPAL strategy with o = 0.9, we have about 82% deduction
in time, almost eight hours faster than the AL without using
ARPAL. Note that ARPAL (fixed) is a strategy that we perform
re-ranking for every ten iterations. In general, we can argue
that ARPAL (fixed) performs some unnecessary re-ranking in
the late stage of active learning which makes its computation
time longer than that from the proposed ARPAL, as shown in
Table III. We should also point out that using ARPAL (fixed)
needs to decide the number of steps for each re-ranking, which
could be hard to find the best choice.

Let us check some more details for the proposed ARPAL
method to see when and how it performs re-ranking. In
Table IV, we observe that ARPAL tends to do re-ranking in
some early stages of the active learning procedure. In the early
stage of the active learning procedure, the model does not have
enough information to estimate the full distribution of the data,
therefore frequent re-ranking could be necessary given newly
acquired labeled data.
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Fig. 5: The MLP result with non-linear SVM.

TABLE V: The MLP result with non-linear SVM.

Computation Time | # of Re-ranking
MLP (4-Layer) | 3 hr 17 min 21 sec 250 times
Random 1 hr 24 min 55 sec 0 times
Traditional 9 hr 37 min 03 sec 250 times

D. Multi-Layer Pool

In this subsection, we demonstrate how the proposed MLP
strategy can further enhance the efficiency. In the experiments,
we need to choose a few out of 50,000 unlabeled candidate
data for an oracle to label. In our design, the 50, 000 unlabeled
pool was organized in four layers with the threshold r* set
to be 656%, 75%, 85%, 95% and use Eq. 4 to determine the
dimensionality. Also, we use Eq. 5 to determine the data size
in each layer (m;).

In Fig. 5, we compare the active learning with the MLP
strategy to the traditional active learning and random sampling.
Again, we observe a huge gap between the active learning with
or without the MLP strategy and the random sampling while
the difference between the MLP-based active learning and the
traditional active learning is relatively small.

To speak of the computation between different methods, we
find out a clear advantage of applying MLP to active learning.
According to Table V, given that both the MLP and traditional
active learning re-ranked the pool 250 times in the experiment,
the MLP-based active learning is faster than the traditional
AL for about six and half hours. That is, the MLP-based
method introduced about 66% time deduction if compared to
the traditional AL. It implies that sacrificing a little accuracy
for a huge computation time deduction can be a good choice
for active learning developers.

TABLE VI: The ARPAL and MLP combined active learning
with non-linear SVM.

Computation Time | # of Re-ranking
MLP (4-Layer) 3 hr 17 min 21 sec 250 times
ARPAL(c =0.9) 1 hr 43 min 09 sec 4 times
Combined(c = 0.9 ) 1 hr 36 min 25 sec 4 times
Random 1 hr 24 min 55 sec 0 times
Traditional 9 hr 37 min 03 sec 250 times
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Fig. 6: The ARPAL and MLP combined active learning with
non-linear SVM.

E. ARPAL + MLP

The ARPAL and MLP strategies are two more or less
independent strategies that we can apply to active learning.
Combining them is a good choice to save more time even we
may have a small loss on its accuracy. Fig. 6 and Table VI
show the combined result. Even the combined method does
output the worst result from all active learning approaches
in terms of effectiveness, we do observe that the difference
between them is quite small. On the other hand, the difference
between the computation time from various active learning
methods is not that small or about 83% deduction if comparing
between the ARPAL and MLP combined approach and the
traditional active learning. Clearly, we observed that adopting
ARPAL and MLP together can be a good choice for active
learning given large scale unlabeled data. It is also not very
difficult to imagine an even larger advantage for a larger
unlabeled data.

V. CONCLUSIONS

We proposed ARPAL and MLP strategies to improve the
efficiency of applying active learning for large-scale and high-
dimensional data. The ARPAL strategy is used to judge
whether or not we should re-rank the unlabeled data in each ac-
tive learning iteration. If the models change little between this
and the next moment, we choose to avoid the re-ranking. In a
more precise treatment we considered the difference between
the learning in the early stage and in the late stage because
the model is expected to be stabilized in the late stage of
learning. On the other hand, we further improved the ARPAL-
based active learning efficiency by arranging unlabeled data for
ranking in a multi-layer pool with the MLP strategy. As shown
in experiments, the proposed ARPAL and MLP combined
approach can speed up the active learning procedure by about
83% if compared to the traditional active learning; while at the
same time, the model effectiveness remains. We believe that
the proposed strategies and developed framework for active
learning can have an impact for the active learning research
in the big data era.
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