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Abstract—We utilize sensors to help us monitor events in
the environment around us. To save power consumption, we
often prefer to use as few sensors as possible and the sensors
can be on for as limited time as possible while keeping the
same or similar service performance from the sensors. In this
work, we propose a mechanism that can use a small subset of
sensor readings and the rest of sensor readings that are not
collected can be approximated by the available sensor readings.
We adopt Gaussian process regression as the prediction model.
One key to have an effective Gaussian process prediction given
sensor reading data of high variety relies on how we find an
appropriate kernel function for the process. More specifically,
given sensor data that have spatial and temporal relationships,
we propose an anisotropic kernel for the process that can
integrate different relationships as one and we can successfully
describe the relationship between each pair of different sensor
readings for the reading prediction. The experiments for
evaluation are conducted based on a case study on weather
data that consist of temperature readings collected in Taiwan.
The experiment results show that the proposed Gaussian
process regression with anisotropic kernel function can well
describe the spatio-temporal relationships between different
sensor readings and give effective temperature prediction.

Keywords-Anisotropic kernel, Gaussian process regression,
spatio-temporal modeling, temperature prediction.

I. INTRODUCTION

Sensors deployed in the environment around us can help
us collect useful information for our daily lives. In Intelligent
Transportation Systems (ITS), smart homes, or agriculture
applications, homogeneous or heterogeneous sensors are
utilized to record quantities such as temperature, humidity,
GPS logs, motion acceleration, etc and we can dynamically
make decisions to improve our life quality. One key for
successful sensor deployment is to configure sensors so that
the energy consumption is minimized [5]. To save energy,
we can choose some sensors and put them to sleep when
they have similar behavior to other neighboring sensors. In
this work, we study the spatial and temporal relationships
between different sensor readings. Based on the study, one
can select a small subset of sensor readings as the repre-
sentative set and the information of all sensors can be well
approximated by this representative set. We adopt Gaussian
process regression with an anisotropic kernel function that
balances between spatial and temporal relationships for

sensor reading modeling.
There are numerous energy saving approaches that have

been proposed. To monitor activities in an environment,
technicians deploy sensors efficiently when a small subset of
sensors can well represent all the sensors in the environment.
For instance, one can avoid identical sensor data obtained
from different sensors. In precise, researchers aim at improv-
ing area spectral efficiency (ASE) [1] for efficient sensing.
Another approach is to find a period and put the sensors to
sleep [4]. Relatively stable readings can be ignored as long
as we find no surprise from the readings. In summary, fewer
sensors to install and less time to keep sensors on can save
power consumption.

One approach to integrate the two savings: the saving of
sensor usage and the saving of sensor’s waking up time relies
on how we can relate two sensor readings, the readings
on two sensor locations or the readings collected in two
moments for a single sensor. Given the relationship between
each pair of sensor readings, we can apply any regression
models to interpolate or extrapolate missing readings (the
readings from the sensors that are turned off) given the
representative readings (the readings from the sensors that
stay awake) in an environment. In this work, we adopt
Gaussian process regression (GPR) [6] for sensor reading
interpolation and prediction. Other than predicting a single
answer, GPR also provides the prediction confidence level
for users to make precise decisions.

Technically, to define a Gaussian process (GP) we need
to find a suitable kernel function so that the relationship
between any pair of sensor readings can be well modeled.
To discover the relation between sensor readings, one has
to well describe the characteristics of sensor readings, such
as where, when and how we collect the readings. In GP,
thanks to the nice properties of Gaussian distributions [6],
we only need to define appropriate kernel function given a
pair of sensor readings1. A simple choice of kernel function
is decided by the Euclidean distance between two readings.
In a weather prediction application given temperature sen-
sors, we can compute the Euclidean distance between two

1We often assume the mean function which is also necessary when we
specify a Gaussian process to be a zero function.



temperature readings. We should at least consider where the
temperature sensors are deployed and when we collect the
temperature values. Intuitively, we expect similar readings
when the readings are collected in nearby sensors or in
close moments. However, the Euclidean distance may not
be suitable to be used to define the relation or the kernel
function between two readings in the following cases:

1) The geographic distance between two sensors may not
fully reflect how sensors are related. For instance, two
temperature sensor readings, even they are collected
in nearby sensors may not share similar patterns if
the two sensors are allocated in locations with very
different elevations.

2) The sensor readings may contain various of character-
istics and one could be more important than another
when we need to define the relation between two
readings. Technically, we say that the heterogenous
characteristics need to be transformed to a normalized
version so that we can compute the distance based on
different characteristics.

3) The sensor readings may contain some characteristics
that have a nature hierarchical structure. For instance,
we may describe time as a (year,month, date, time)
quadruple. To define the distance between two sen-
sor readings with hierarchical structure, we have to
choose a distance or kernel function that can take the
hierarchical structure into account.

In this work, we propose an anisotropic kernel function
that can deal with the sensor data of the above properties.
To support our idea, we conduct a case study on a network
that consists of many temperature sensors that are deployed
in Taiwan. Based on our study, we can well describe the
relation between two sensor readings and predict a sleeping
sensor’s reading given its neighboring readings. With such
technique, we can choose a small sensor subset to be the
awake set; also, choose a time to wake up sensors when
necessary. Overall, the power consumption is saved.

The rest of the paper is organized as follows: In Section II
we give a brief introduction of Gaussian process, Gaussian
process regression and the kernel function that is used for the
Gaussian process. After that, Section III is the case study on
a set of sensors that are deployed in Taiwan for temperature
monitoring. We shall discuss how the proposed anisotropic
Gaussian process regression can help us for temperature
prediction. The evaluation of the proposed method is shown
in Section IV. The last part concludes this work.

II. GAUSSIAN PROCESS

Gaussian Process (GP) is a well known method to model
sequential data with discrete or continuous time [6]. We
can use GP to solve both of regression and classification
problems. In this work, we mainly focus on GP Regression
(GPR) related topics.

A. Gaussian Process Regression

Regression is a machine learning problem that aims to
learn the relation between the attribute set x and the response
y ∈ R, given the input data D ≡ {(xi, yi) : i =
1, 2, . . . , n}. Various methods have been proposed to solve
the regression problems, which include linear and nonlinear
types of models. GPR is a method that can give both
the prediction and the confidence level that is associated
with the prediction result at the same time; also, GPR can
take linear or nonlinear functions as the base function in
its modeling. In general, there are two kinds of machine
learning approaches, the parametric and the nonparametric
ones. GPR is a nonparametric type of method. Most learning
tasks must be able to avoid the problems of overfitting or
underfitting. GPR provides a natural mechanism so that we
can flexibly choose between a simple model or a complicated
model for various of inputs and applications [9].

Formally, given a data set D where xi ∈ Rd describes
the attributes, and yi is the scalar output of the i-th data.
GPR will find the function f that can associate xi to yi
by setting appropriate GP parameters. Gaussian process has
good properties where we only need to specify the mean
function m(x) and the covariance function cov(x,x′) to
completely decide the process. We can write:

f(x) ∼ GP (m(x), cov(x,x′)) . (1)

The covariance function is one of the most important part
to decide the whole GP. Very often, we have the covariance
function decided by the distance between two attribute sets
x and x′, written as:

cov(x,x′) = k(∥x− x′∥) , (2)

for a decreasing function k. These GP properties are needed
to be defined before we use GPR (prior properties). Prior
properties of GP can be determined from sampled data [6],
[7]. By giving this prior information, it means that we
give a restriction to the candidate functions f for our final
prediction. There are many kinds of covariance functions,
according to different kinds of distance metrics. One of
the most frequently used covariance function is the squared
exponential function shown as follows,

cov(x,x′) = σ2
f exp

(
− 1

2ℓ2
∥x− x′∥2

)
+σ2

nδ(x,x
′) , (3)

which describes the covariance between x and x′ where
ℓ controls the “influence range”, the larger ℓ the more
extensive influence between data and the function δ is the
Kronecker delta function. The function is also referred to
the Radial Basis Function (RBF) kernel in Support Vector
Machines (SVM) [8], [3].

B. Anisotropic Kernel Function

We shall design an appropriate kernel function to describe
the relation for each pair of sensor readings given the
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Figure 1. The relationship between proximity and behavior difference.
(a) and (b) show that smaller geographic distance implies similar patterns,
while (c) shows another case when small distance does not imply small
pattern difference.

Gaussian process regression modeling. Various of kernel
functions are available for Gaussian Process Regression.
For example, we can choose squared exponential, Ornstein-
Uhlenbeck, matérn, etc as the candidate kernel function.
Among them, squared exponential is a widely used covari-
ance function [2] because the computation is based on a
simple metric, the Euclidean distance. Although the kernel
function is intuitive and easy to implement, sometimes it can
not easily be applied to certain problems. When we have
different features where each of them has its own portion
of contribution to the regression result, the plain Euclidean-
based squared exponential kernel may not be acceptable.

As a kernel function, squared exponential function rep-
resents the relation between each pair of sensor readings.
If the readings have high similarity, they shall have large
covariance or small Euclidean distance. Some issues arise
when we can not use a kernel function based on the plain
Euclidean distance (such as the kernel function in Eq. 2)
between different sensor readings. Let us discuss the relation
between different temperature readings, such as the one
shown in Fig. 1. We study two cases of relationship between
pairs of sensor readings.

The case when isotropic kernel works: In Fig. 1, sen-
sors that are connected by distance a have very similar values
(shown by the same color). These two sensors also have
relatively small Euclidean distance. On the other hand, a pair
of sensors that are connected by distance b have different
sensor colors and they are located far away from each other.
If we use Euclidean distance and (x, y) coordinates in 2-D
as the features to build a kernel function, we will obtain
a covariance function close to what we expect. That is, the
covariance between two sensors that share a small Euclidean
distance will have similar sensor readings and vice versa.

The case when we need an anisotropic kernel: To
study another case, we can focus on a pair of sensors with
distance c in Fig. 1. Two sensors are located relatively

close to each other. If we have c < a, we expect even
more similar readings in the pair of sensors with distance
c instead of distance a. However, it is not the case because
the pair of sensors with distance c are from two kinds of
geographic regions, one is close to the ocean and the other
is on the small-hill region and they should not have similar
temperature readings. On the other hand, the two sensors
with distance a should have similar temperature readings
because both of them are close to the ocean. If we use
squared Euclidean distance and 2-D (x, y) coordinates as
the features to build a kernel function for GPR in this case,
the result may not be acceptable because the covariance
can not well represent the data’s relation. An alternative
way to solve the puzzle is to add additional features other
than (x, y) such as the elevation information z (shown by
the color in Fig. 1) and the Euclidean distance on the 3-
D space is hopefully well represents the relation between
sensor readings. To solve the problem systematically, we
look for a general strategy to build a kernel for various of
attributes and it needs very little domain knowledge.

Based on the prior knowledge for different sensor data, we
know that sometimes certain features may have more contri-
bution to the regression result than others. For example, to
predict temperature, latitude information is generally more
important than longitude information, and elevation is the
most influential feature among all three. Motivated by the
above observation, we propose a way to modify the kernel
function. In our design, we give a weight for each feature.
By estimating appropriate weights for different features, we
can determine the portions of contribution for every feature
to the regression result. We propose a general kernel function
called anisotropic kernel as:

cov(x,x′) = σ2
f exp

(
− 1

2ℓ2

d∑
i=1

wi(xi − x′
i)

2

)
+σ2

nδ(x,x
′) ,

(4)
where d is the dimensionality or the number of features we
have and xi, x′

i are the i−features of x and x′ respectively.
In the formula, we use an anisotropic squared exponential
covariance function to describe the relation between two
sensor readings x and x′. We choose the sum of the weights
to be 1. In the next section, we first introduce a real
case study on which we can apply the proposed idea and
demonstrate how we can use the proposed idea to solve the
real problem: to predict temperature in Taiwan.

III. CASE STUDY

To demonstrate how we can use the proposed method to
solve real-world problems, we focus on a temperature pre-
diction given Taiwan’s temperature data. Taiwan temperature
dataset is an archive of temperature sensor readings collected
from regions around the whole Taiwan. We determine to
use Taiwan temperature data for our case study because
of two considerations. First, the data are relatively easy
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Figure 2. More than 250 temperature sensors are deployed all over the
places around Taiwan. Different places may own different sensor density
such as fewer sensors deployed in mountainous area rather than in other
areas. The right figure shows the temperature readings of a red point sensor
on the left figure for several days. Obviously, there is a periodic pattern
on the right figure. The temperature readings of next days have almost the
same pattern with the current day.

to obtain from public domains. That makes the further
comparisons from other methods possible. Second, the data
were collected from more than 250 sensors installed in
various locations around Taiwan. We can assume that those
locations are surrounded with different environmental con-
ditions and sensors on those locations are likely to collect
data with high variety. For instance, some of them are
deployed in mountainous area while some others are in the
area near the sea, and etc. We aim to demonstrate that the
proposed method can be effective for prediction given such
a high variety dataset. Fig. 2 shows where the temperature
sensors were deployed. As we can see, sensors are deployed
in various locations, including mountains, hills, tablelands,
plains, basins, coastal area, isolated islands, etc. We do have
dense sensor deployment in places with large populations.

A. Temperature Sensor Readings

Temperature is one of the most important information for
our daily life. Everyday, many people care about weather
forecast which includes temperature prediction and many
others. To fulfill the need, numerous sensors were deployed
around our environment and continue to collect important
information for forecast. A common issue includes frequent
sensor failure which may need annoying sensor replacement
or the replacement may be not possible at all. Another issue
that becomes more serious these days is the problem of
large amount of energy consumption and bandwidth usage
when sending the sensor data. One may want to turn off
some sensors for certain period of time for energy saving
while the sensor data can still be collected without too much
information loss. After all, we look for a robust sensor
network where the network continues to collect reliable data
even with a small amount of missing data in the network.

B. Sensor Reading Neighborhood

We have to investigate the spatial and temporal relation-
ships between data so that missing data can be recovered

based on their spatial or temporal neighbors. Given the
spatial relationship between data, we can expect that tem-
perature readings from regions with high proximity are very
close to each other. Sometimes we have to consider some
regional characteristics such as elevation, close to sea or not,
etc, to decide the spatial relationship. On the other hand,
with the temporal relationship between data from temporal
neighbors, the current temperature value is likely to be close
to previous temperature values. We define the spatial and
temporal neighborhoods as follows:

• Spatial neighborhood: It means the sensor readings
collected from nearby geographic locations or with
similar characteristics such as elevation.

• Temporal neighborhood: It means the readings that
belong to similar moments. There is a daily periodicity
in temperature data. The current temperature will be
close to previous temperatures, and also temperatures
at same time but previous days.

Spatial and temporal neighborhood relationships are es-
sential information in temperature prediction. We can use
spatial or temporal relationship separately for temperature
prediction; on the other hand, we can integrate the two
relationships together to improve the prediction. To ease
the computation load, we combine temporal information and
aggregated spatial information; also, the spatial information
and the aggregated temporal information for prediction.

Fixed a moment t, we compute the usual temperature nt

of the moment, called the aggregated spatial information
of the moment. On the other hand, fixed a sensor s, we
compute the usual temperature ms of the sensor, called the
aggregated temporal information of the sensor. That is,

nt =
1

N

N∑
s=1

T s
t , ms =

1

M

M∑
t=1

T s
t , (5)

where T a
b indicates the temperature value on sensor a at time

b, and M and N are time interval and number of (regional)
sensors respectively.

C. Sensor Reading Prediction

We proposed to use spatial and temporal information to
predict the temperature on specific sensor for certain time.
There are various approaches to do prediction by exploiting
the spatial and temporal information in different ways. To
predict the temperature of sensor s at time t using the spatial
domain information, we can consult all the temperatures
T

Ns(s)
t at time t for s’s spatial neighbors Ns(s), so called

the spatial approach. In GPR, the data for learning is a set
of (x, y) = ((latitude, longitude, elevation), temperature)
for temperature prediction. We denote the spatial approach
by S approach. Similarly, we can define the temporal
approach T by collecting the temperature set T s

Nt(t)
when

we want to predict the temperature of sensor s at time t using
the temporal domain information for the temporal neighbors
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Figure 3. The approach St, combining the spatial neighborhood information and aggregated temporal information for prediction. (a) There are two
readings from two sensors marked with red and blue color. The relation of these two sensor readings can be defined by sensor’s proximity (latitude,
longitude) and elevation. (b) Red and blue sensor readings’ relation can also be defined by their usual reading values at certain range of time. Usual reading
value of a sensor is presented as an aggregated temporal information ms.
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Figure 4. The approach T s, combining temporal neighborhood information and aggregated spatial neighborhood information to do prediction. (a) Two
readings from a single sensor but different moments are presented in the left figure, marked as blue and red points. The relation of these two readings can
be seen by their time differences (different day, different time) (b) Red and blue sensor readings’ relation also can be seen from the usual reading values at
those moments. The usual reading value of a certain moment is obtained from aggregated reading values from several nearby sensors (aggregated spatial
neighborhood information).

Nt(t) of time t. The learning set for temporal approach T
in GPR is (x, y) = (time index, temperature).

To predict the temperature T s
t using both the spatial and

temporal information, we can consider the temperature set
T

Ns(s)
Nt(t)

based on both the spatial and temporal neighbors.
However, it could be time-consuming if we consider a big
set of neighbors for a single-point estimation when we apply
GPR. We propose two strategies St and T s to bypass the
problem. The first strategy St relies more on the spatial
information. It integrates the spatial and temporal informa-
tion by combining the spatial information and aggregated
temporal information. The features of a sensor s in this
case has an additional aggregated temporal information ms

and the complete features becomes (slat, slong, selev,ms)
for learning in GPR. This method can also be illustrated
in Fig. 3.

The second approach T s relies more on the temporal
information. It combines the temporal information and ag-
gregated spatial information for regression. The feature set
is given by (t, nt) for a moment t. We also illustrate the
idea in Fig. 4. Keep in mind that to have the two methods

St and T s work properly for us, we need the help from
anisotropic kernel in GPR learning to appropriately balance
between different types of features in the set for prediction.

IV. PREDICTION RESULT AND ANALYSIS

To evaluate how effective the proposed methods is for
temperature prediction, we conduct series of experiments to
demonstrate that the proposed methods indeed perform well
in many occasions. The main purposes of the experiments
are to show: (1) considering spatial and temporal information
together gives better performance than considering only
spatial or temporal information; (2) the anisotropic kernel
is more appropriate than isotropic kernel in temperature
prediction. In the experiments, we randomly chose twelve
sensors, or three sensors for each of the four regions:
mountainous area, hills, plains (including coastal area), and
isolated area, as the test set to see if the sensor values can
be recovered correctly. The twelve selected test sensors and
their behaviors are shown in Fig. 5.

The weights for the features in St approach were as-
signed based on prior knowledge; and for the remaining
features the weights were decided dynamically. The prior



Table I
THE ABSOLUTE ERROR OF TEMPERATURE PREDICTION BASED ON FOUR METHODS: S , T , St, AND T s. A BOLD-FACE WITH A STAR INDICATES THE
MINIMUM VALUE PER COLUMN. THE FIRST THREE SENSORS BELONG TO MOUNTAINOUS AREA, FOLLOWED BY THREE SENSORS FROM HILLS, THEN

THREE SENSORS FROM PLAINS, AND THE LAST THREE ARE FROM ISOLATED AREA.

A. July, 8 2013 06:00 AM
Approach S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Isotropic Kernel
S 1.76 1.96 0.66 2.11 2.64 1.34 1.08 2.32 2.63 1.98 0.95 2.46
T 0.30 0.76 0.03* 0.87 0.03 0.24 0.64 0.39 0.85 0.27* 0.43 0.36*
St 0.62 1.11 0.66 0.80 2.20 0.85 0.34 1.11 1.88 1.64 0.37 1.63
T s 0.39 0.75 0.03* 0.38 0.10 0.29 0.37 0.19 0.70* 0.46 0.18 0.47
Anisotropic Kernel
St 0.44 0.63* 0.23 0.38 1.46 0.18* 0.13* 0.33 1.87 1.08 0.03* 0.78
T s 0.27* 0.70 0.05 0.15* 0.01* 0.25 0.16 0.10* 0.80 0.50 0.14 0.41

B. July, 8 2013 14:00 PM
Approach S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Isotropic Kernel
S 2.25 1.42 1.12 3.10 4.30 1.01 0.37* 0.82 5.03 0.57 0.60 1.04
T 4.59 0.36 0.70 0.30 0.57 1.38 1.45 1.82 5.39 1.26 0.17 1.40
St 1.24 0.35 0.40 0.99 0.40* 0.56 0.56 1.18 5.65 1.32 0.68 0.47
T s 4.90 0.20 0.26 0.32 0.59 1.23 1.47 1.73 4.87 1.11 0.21 1.27
Anisotropic Kernel
St 0.69* 0.02* 0.31 0.04* 0.57 0.26* 0.66 0.67* 4.88 0.19* 0.48 0.16*
T s 4.59 0.19 0.05* 0.16 0.61 1.16 1.19 1.01 4.20* 0.77 0.06* 1.37
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Temperature record of test sensors

Figure 5. Twelve sensors from different regions are selected as test sensors.
There are three sensors in each of the four regions: mountains (magenta),
hills (black), plain (red), and isolated area (blue). The right figure shows
the temperature records of the twelve selected sensors within several days.

knowledge suggests that the latitude has bigger influence in
temperature than the longitude; so the weight for latitude was
assigned bigger than the one for longitude. For elevation and
aggregated temporal information, the weights were tuned for
the best performance. Practically, when we want to predict
temperature value T s

t , we used the latest temperature (T s
t−1)

as training data. We try to find the best weights that give
minimum error in predicting T s

t−1. Then we applied this
weights to predict next temperature T s

t . We believe that the
temperature changes only slightly from t−1 to t. So that, the
weights for predicting T s

t−1 can also be used to predict T s
t .

We use wa, wo, we, wn to denote the weight for latitude,
longitude, elevation, and aggregated temporal information
respectively. Similar to the St approach, we also tune the
weights for the features in the T s approach to have the best
performance.

The prediction was done by Gaussian Process Regression

with the modified kernel function: the anisotropic squared
exponential function (Eq. 4). Parameters of GPR were set
to be the same for all scenarios. They are ℓ = 10, σf = 1,
σn = 0.3 and the mean function m(x) is set to be 0.

We show the temperature prediction result in Table I.
The values that are marked with star(*) are the minimum
of absolute error in each column. The absolute error is the
value of absolute difference between the real reading value
and the prediction result. From Table I, we can see that
the integrations of spatial and temporal information (St,
T s) can give better result than those using only spatial or
temporal information (S or T ). In addition, the results based
on the anisotropic kernel are better than those based on the
isotropic kernel. In Table I.A, eight out of twelve sensors
had minimum absolute error when we use anisotropic kernel
function in GPR. From Table I.B, the experiments with
another time, ten of the sensors had minimum absolute
error values when using anisotropic kernel function of GPR.
Given the test sensors belonging to different locations in
Taiwan, GPR with the anisotropic kernel function still can
predict temperature value with low absolute error.

A. To choose between Spatial and Temporal information

The previous experiments also show that the integration of
spatial and temporal neighborhood information gives better
prediction results in most experiments. We want to analyze
more about the utilization of those informations such as
when we have to use more spatial information than temporal
information, and vice versa.

We compare the temperature prediction on sensors in two
different regions: plains (or coastal area) and isolated area.
We randomly pick three sensors from plains and three sen-
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Figure 6. Six sensors were selected as test data. Sensors S1, S2, and S3 are the sensors that belong to isolated area; while sensors S4, S5, and S6 are
the sensors that belong to plain or coastal area. The behaviors of those sensors are shown on the right.
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Figure 7. The behavior of sensors and their neighbors. (a) A sensor has similar behavior with its spatial neighbors, (b) a sensor has different behavior
with its spatial neighbors.

sors from isolated area. In this case study, there are so many
sensors deployed in the plains. It means that the sensors in
this area generally have many spatial neighbors. On the other
hand, the three sensors from isolated area are the sensors
that have very stable temperature readings along the whole
day. The temperatures at noon and night are not significantly
different. We can say that the sensors in this group have more
temporal neighbors. All the six sensors and their patterns are
shown in Fig. 6. We use the proposed methods to predict
their temperatures within one day (July, 8 2013) and to show
how spatial and temporal information play different roles
in the prediction. We used Mean Absolute Error (MAE),
the average difference between real reading values (Ti) and
predictions (Pi), defined by

MAE =
1

N

N∑
i=1

|Ti − Pi| , (6)

to evaluate the proposed methods. The number N is the
number of turned off sensors.

The result is presented in Table. II. For sensors deployed
in plains, the result shows that the approach St works better
than approach T s given the anisotropic kernel. That implies
that spatial neighbors’ informations are more important than

Table II
PREDICTION RESULT OF SENSORS THAT BELONG TO COASTS AND
ISOLATED AREA BASED ON FOUR METHODS: S , T , St, AND T s.

Mean Absolute Error
Approach Sensors on plains Sensors on isolated islands
Isotropic S1 S2 S3 S4 S5 S6
S 0.84 1.18 1.06 1.15 2.03 1.96
T 0.85 0.82 1.40 0.42 0.51 0.63
St 0.67 0.53 0.79 1.15 1.32 1.80
T s 0.69 0.71 1.17 0.37 0.45 0.56
Anisotropic
St 0.50* 0.40* 0.70* 0.67 1.14 1.65
T s 0.55 0.56 0.92 0.32* 0.35* 0.50*

temporal neighbors’ information. This case happens when
we have many spatial neighbors whose behaviors are similar
to the test sensor’s behavior. On the other hand, for sensors
that were deployed in isolated islands, that is when we have
more temporal neighbors than spatial neighbors for the test
sensors, or the spatial neighbors of the test sensors own very
different patterns. We should better use temporal neighbors’
information for prediction than using spatial neighbors’
information. This behavior difference between a sensor and
its neighbors is illustrated in Fig. 7.
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Figure 8. Grey points are the sensors that are put to sleep for few moments.

Table III
PREDICTION RESULT OF TURNED OFF SENSORS BASED ON FOUR

METHODS: S , T , St, AND T s. THE SENSORS WERE TURNED OFF ON
JULY, 8 2013.

Mean Absolute Error (MAE)
Approach 06:00 AM 14:00 PM 20:00 PM
Isotropic Kernel
S 1.22 1.26 1.09
T 0.85 1.27 0.86
St 0.68 1.14 0.89
T s 0.35 1.00 0.86
Anisotropic Kernel
St 0.47 0.88 0.64*
T s 0.22* 0.85* 0.70

B. Saving on Power Consumption

We did more experiments on sensor reading prediction
to simulate power consumption saving. As we mentioned
before (or Fig. 2), there are relatively large number of
sensors deployed in plains or coastal area. We can choose to
put some sensors deployed in this area to sleep for certain
moments. To achieve that, we check whether or not we can
predict the slept sensors’ readings based on their neighbors’
information using our proposed method. The sensors that we
turned them off for a while are shown in Fig. 8.

The experiment result in power consumption saving sim-
ulation is presented in Table III. The result shows that
the proposed methods can perform well for sensor reading
prediction in order to decrease power consumption. Given
the best methods from the approach T s or the approach St,
we recover the original readings up to 0.22 to 0.85 MAE
(temperature in Celsius).

V. CONCLUSION

Given a set of sensor data, we proposed a mechanism
that can save power consumption by using a limited sensor
readings to represent the complete sensor readings. The
mechanism is based on a study that can find the relation
between sensor readings in different locations or collected in
different times; that is, we consider the spatial and temporal
relations of two sensor readings to decide where and when
we can choose not to collect the sensor readings to save

energy. We adopt a Gaussian process regressor to recover
the missing sensor readings nicely so that the limited awake
sensor readings can well represent the other readings from
the sensors that are turned to sleep. We proposed various
methods that use both spatial and temporal information for
prediction and also a strategy that can balance the spatial
and temporal relationships of sensor readings in the kernel
function for Gaussian process regression. The anisotropic
kernel function performed better than the isotropic version.
A case study on temperature prediction given Taiwan’s
weather data showed that the proposed techniques perform
well in predicting the turned off sensor readings with low
Mean Absolute Error (MAE) given a small set of awake
readings. The strategy can be generalized to various attribute
set to decide a good kernel function for prediction given a
limited learning set.
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